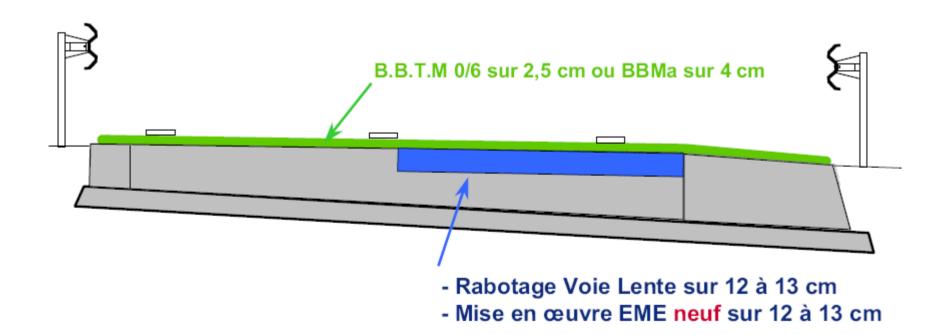


Renforcement de la chaussée

- Mesure améliorant la portance d'une chaussée existante
- Intervention par le biais de pose de nouveaux matériaux
- Contraintes parfois importantes
 - >> Améliorer la portance ... sans modifier la géométrie
 - >> Passage sous un P.S.
 - >> Charge sur O.A.
 - Évacuation des eaux

Pourquoi renforcer une chaussée?

- Prolonger sa durée de vie
- Répondre à de nouvelles sollicitations
 - >> Sous-dimensionnement
 - >> Modification du contexte
- Changer les matériaux en place
- Limiter les coûts d'investissement
- Diminuer les durées d'intervention
- Réduire la consommation de ressources en matériaux


Définitions

- ▶ Renforcement par rechargement
 - Pose sur le revêtement existant d'une ou de plusieurs couches de revêtement
 - Nécessite que les couches bitumineuses existantes sont suffisamment stables et ne présentent aucune déformation permanente

Définitions

- Renforcement par renouvellement partiel de la superstructure
 - Certaines couches de la superstructure existante sont enlevées (décapage/fraisage)
 - Remplacement par des couches de portance supérieure

- ▶ Chaussée autoroutière (SANEF A16 Amiens)
 - ▶ Renforcement par renouvellement partiel : Voie lente
 - Renforcement par rechargement : Voie de dépassement et BAU

▶ Fraisage voie lente

▶ Pose enrobé voie lente (renouvellement partiel)

▶ Compactage voie lente

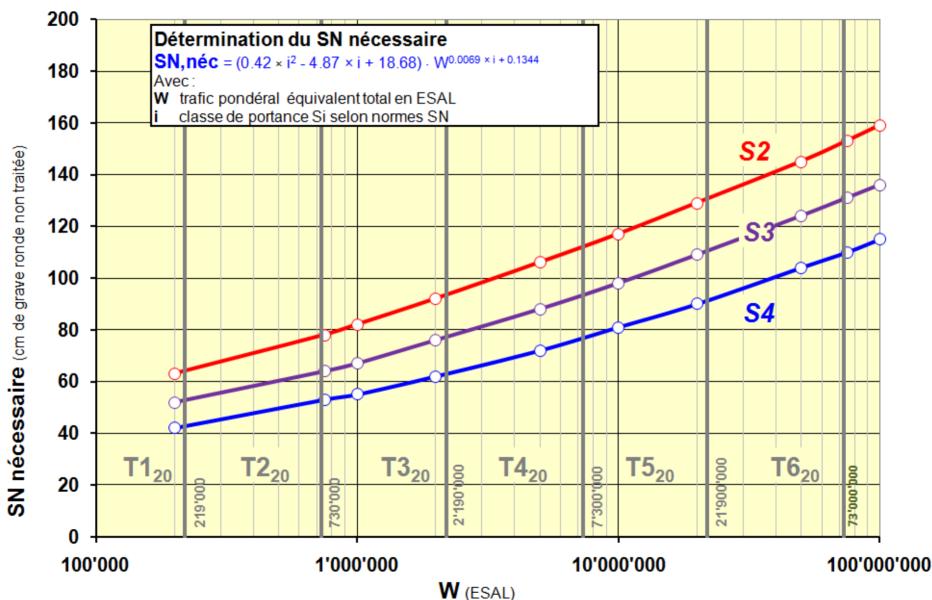
▶ Pose du rechargement sur toute la chaussée

Méthodes de dimensionnement

- Épaisseurs équivalentes
 - >> SN Structural Number
 - >> Facteur de portance a
- Mesures de déflexion
 - >> Mesure Déflectographe Lacroix ou Poutre Benkelman
 - Abaques
 - ➤ Trafic + Déflexion → Épaisseur de rechargement

Valeur de structure SN

- **▶** Structural Number *SN*
- Vérification
 - $SN \geq SN_{n\acute{e}c}$
- ▶ Épaisseur structurelle *SN*


$$SN = \sum_{i=1}^{i=n} a_i \cdot D_i$$
 en cm de grave ronde non traitée

- $\Rightarrow a_i$ facteur de portance relative du matériau constitutif de la couche
- $\rightarrow D_i$ épaisseur de la couche (cm)

Facteur de portance relative

	Matériaux en fonction de l'état des dégradations							
Couches de la chaussée	Nouvelle chaussée	Dégradations légères Perte de matériaux / Fissuration	Dégradations moyennes Perte de matériaux / Fissuration	Dégradations structurelles Faïençage / Déformation				
Couche de roulement, de liaison et de base								
Enrobés bitumineux AC, AC T, AC MR Splittmastix-asphalt SMA Asphalte coulé MA	4,0	3,4	2,8	2,4				
Couche de roulement et de liaison								
Enrobé drainant PA	2,6	2,2	1,8	1,6				
Couche de base								
Enrobés bitumineux à module élevé AC EME C1 1)	4,4	3,8	2.0	2.4				
Enrobés bitumineux à module élevé AC EME C2 1)	5,6	5,0	2,8	2,4				
Couche de fondation								
Enrobé bitumineux AC F	3,2	2,8	2,2	1,9				
Pénétration et stabilisations								
Pénétration	2,6	2,2	1,8	1,6				
Stabilisation aux liants hydrauliques	2,4	2,0	1,7	1,5				
Stabilisation aux liants bitumineux	2,7	2,3	1,9	1,6				
Grave non traitée								
Grave concassée	1,25	1,25	1,25	0,75 ²⁾				
Grave ronde	1,0	1,0	1,0	0,6 ²⁾				

Valeur de structure nécessaire

Estimation de la durée de vie résiduelle

- ▶ Déterminer le SN_{existant}
- **▶ Déterminer le SN**nécessaire
 - → Selon W et S_i

$$SN_{n\acute{e}c} = (0.42 \times i^2 - 4.87 \times i + 18.68) \times W^{0.0069 \times i + 0.1344}$$

▶ Poser l'équivalence

- ▶ Calculer le W correspondant
- Obtenir la durée de vie résiduelle DVR

W =
$$(TF_{initial} + TF_{final})/2 \cdot DVR \cdot 365$$

 $TF_{final} = TF_{initial} \cdot (1 + t_c)^{DVR}$

Exemple

▶ SN_{existant} 100 cm grave ronde

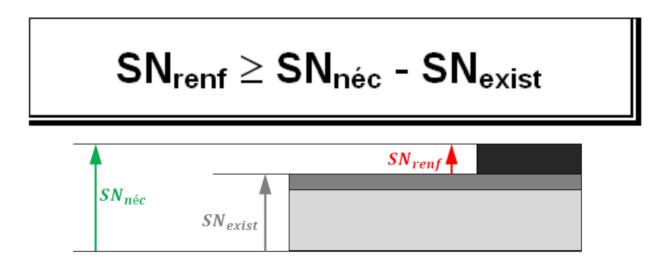
▶ Classe de portance *S3*

► Trafic pondéral actuel 2'000 ESAL/j + 2%/an

► SN_{nécessaire}

 $(0.42 \times 3^2 - 4.87 \times 3 + 18.68) \times W^{0.0069 \times 3 + 0.1344}$

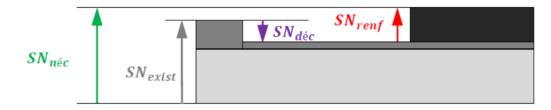
W correspondant


13,34 mios ESAL

Obtenir la durée de vie résiduelle DVR

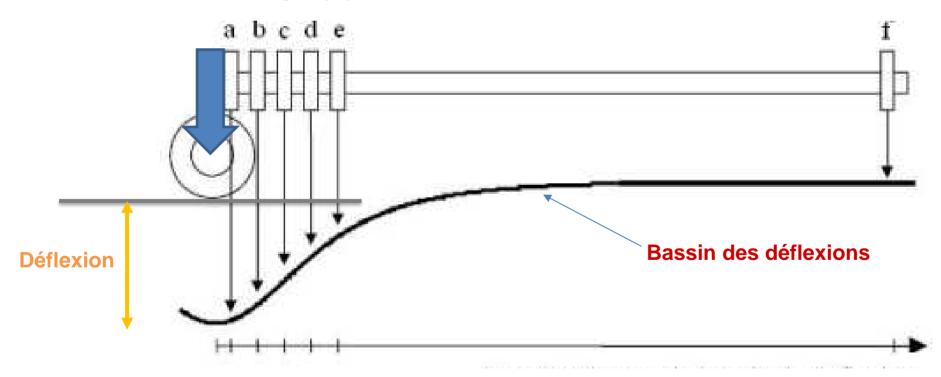
$$W = 13,34 \times 10^6 = (2'000 + [2'000 \times (1 + 0.02)^{DVR}]/2 \times DVR \times 365$$

DVR = 15,5 années

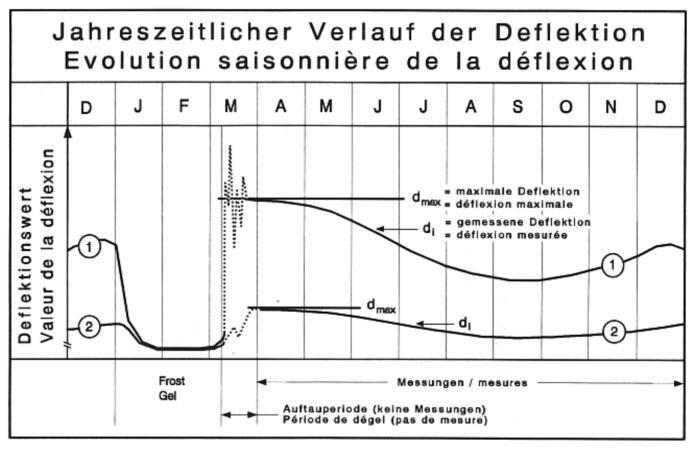

Renforcement par rechargement

- ▶ SN_{renf} valeur de structure du renforcement
- ▶ SN_{néc} valeur de structure nécessaire
- ▶ SN_{exist} valeur de structure de la chaussée existante
- cm de grave ronde

Renforcement par renouvellement

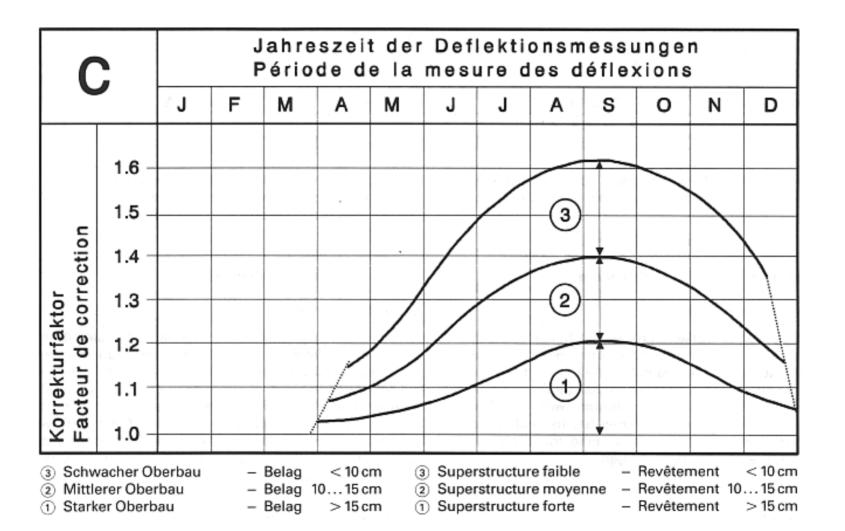

$$SN_{renf} \ge SN_{n\acute{e}c}$$
 - $(SN_{exist}$ - $SN_{d\acute{e}c})$

- ► SN_{renf} valeur de structure du renforcement
- ▶ SN_{néc} valeur de structure nécessaire
- ▶ SN_{exist} valeur de structure de la chaussée existante
- ▶ SN_{déc} valeur de structure de la chaussée décapée
- ▶ cm de grave ronde


Déflexion

- Mesure de la déformation élastique instantanée d'une chaussée sous l'effet d'une charge
- Valeurs en 1/100ème de mm

Evolution saisonnière des déflexions


Maximum au dégel / Minimum en été

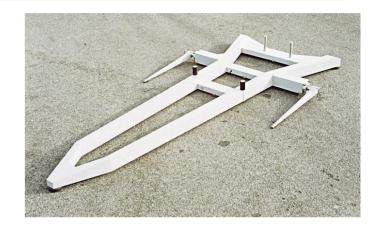
 Schwacher Oberbau Superstructure faible Starker Oberbau Superstructure forte

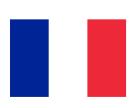
Facteur de correction des déflexions

Déflexion déterminante dv

- Coefficient de variation CV
 - Homogénéité des mesures

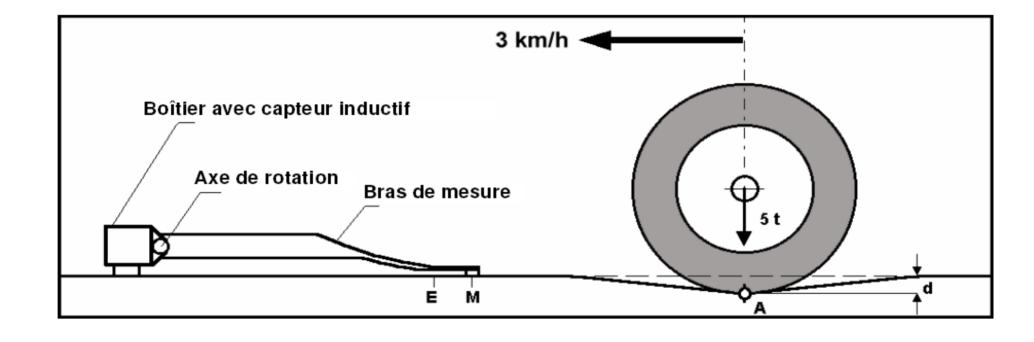
$$CV = \frac{\sigma}{\overline{d}} \le 0.35$$

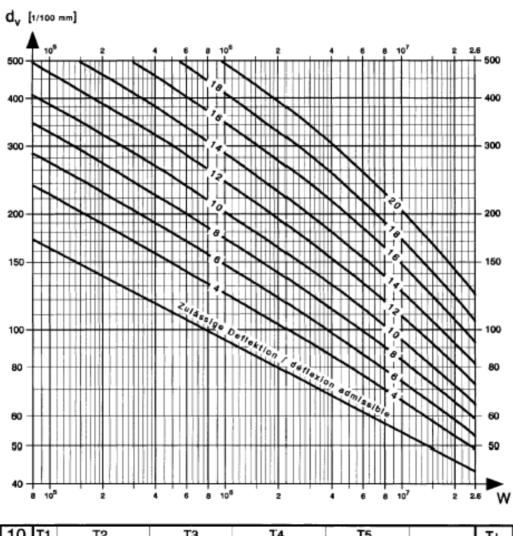

Déflexion déterminante dv


$$dv = c (d + 2 \sigma)$$

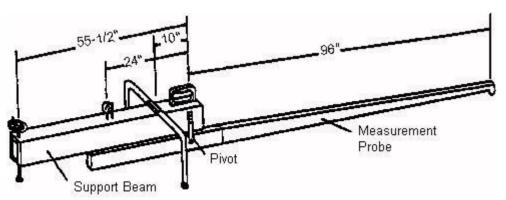
- C facteur de correction
- déflexion moyenne

Déflectographe Lacroix



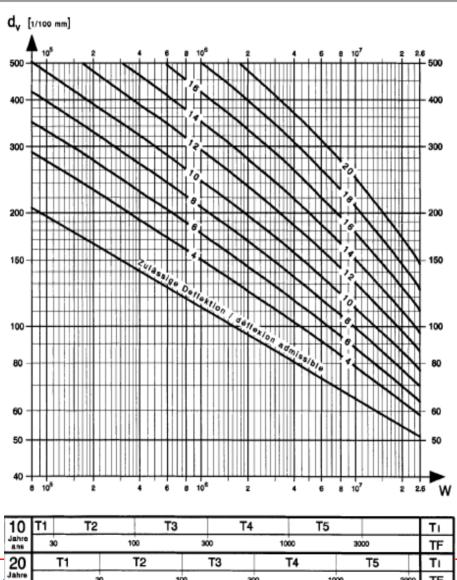


Déflectographe Lacroix


Déflexion Lacroix

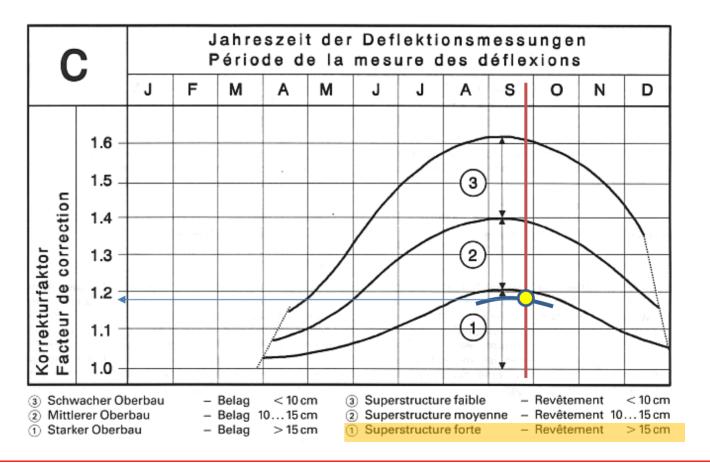
10	T1 T2	T3		T4	T5		Ti
Jahre ans	30	100	300	100	00 30	000	TF
20	T1 -	T2	T3	1	Γ4	T5	Ti
Jahre ans	э	0	100	300	1000	3000	TF

Poutre Benkelman



Déflexion Benkelman

Comment procéder ?


Exemple

- >> Poutre Benkelman
- >> Mesures effectuées fin septembre
- $\rightarrow d = 80 \ 100^{eme} \ mm$
- $\Rightarrow \sigma = 20 \ 100^{\text{ème}} \ mm$
- >> TF durant les 20 prochaines années = 300 ESAL / j
- >> Chaussée souple
 - □ 17 cm d'enrobé fortement dégradé
 - □ 50 cm de grave

Facteur de correction C

- ▶ 17 cm
- **▶** Fin septembre

 \rightarrow C = 1,18

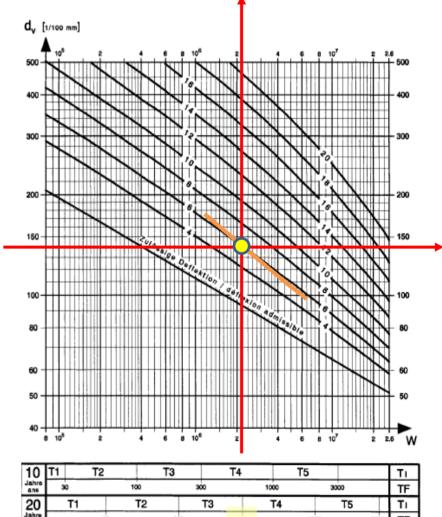
Déflexion déterminante dv

Coefficient de variation CV

$$CV = \frac{\sigma}{d} = 20 / 80 = 0.25 \le 0.35$$
 OK!

Déflexion déterminante dv

$$dv = c \cdot (\bar{d} + 2 \cdot \sigma)$$


$$\rightarrow$$
 1,18 · (80 + 2 · 20) = 142 \cong 140 $100^{\text{ème}}$ mm

Abaque Benkelman

- \rightarrow dv = 140 100ème mm
- ▶ $TF_{20} = 300 ESAL/j$

- $W = 300 \cdot 20 \cdot 365$
- **▶** W = 2,19 mios ESAL

- ▶ 6 cm de rechargement
 - Enrobé AC

10	T1	T2	T3		T4	T5			Ti
Jahre Ans	30	1	00	300		1000	3000		TF
20	T1		T2	T3		T4	T5		Tı
Jahre ans		30	100		300		1000	3000	TF

